
Model-based Transition from Requirements to High-level Software
Design

© Hermann Kaindl

Institut für
Computertechnik

ICT
Institute of
Computer Technology

Model-based Transition
from Requirements to

High-level Software Design

Hermann Kaindl
Vienna University of Technology, ICT

Austria

Institute of Computer Technology

Business

SW system to be built

System Border

Composite system

System overview

business actor
business workers

Model-based Transition from Requirements to High-level Software
Design

© Hermann Kaindl

Institute of Computer Technology

Outline

Background
Functional requirements, goals and scenarios
/ use cases
Requirements and UML models
Transition to software design
Model-based transformation?

Institute of Computer Technology

User wishes / needs
IEEE Standard:
“A condition or capacity needed by a user to solve
a problem or achieve an objective.”
“The <system> shall be able to ...”

- system to be built
- composite system

Example: “The ATM shall accept a cash card.”
Requirements modeling

What are requirements?

Model-based Transition from Requirements to High-level Software
Design

© Hermann Kaindl

Institute of Computer Technology

User requirements documents

Software/system requirements documents

Mostly descriptions in natural language

Representation often unstructured

Ad hoc process

Communication problem

Requirements and use cases?

What are requirements? – In practice

Institute of Computer Technology

Class in UML (Unified Modeling Language)
http://www.omg.org

Generalization /
Specialization
(in UML notation)

Transaction
date-time

Cashier transaction Remote transaction

Class and generalization

Object − instance

Model-based Transition from Requirements to High-level Software
Design

© Hermann Kaindl

Institute of Computer Technology

Example: attribute date-time

Mechanism for information sharing

• Structure (variables, attributes)

• Behavior (methods, procedures)

Multiple inheritance

various theories

Inheritance

Institute of Computer Technology

Attribute for representation of property

Association
(in UML notation)

Transaction
date-time

0..*

ATM
Entered on

Relation for linking instances
Multiplicity: range of allowable cardinalities

Attributes and associations

Model-based Transition from Requirements to High-level Software
Design

© Hermann Kaindl

Institute of Computer Technology

Methods are procedures / functions

Interface protocol for indirect calls

Sending and receiving of messages

Actual method to be invoked determined
through rules for processing a message,
e.g., “dynamic binding”

Methods and messages

Institute of Computer Technology

“particular cases of how the system is to be used”
Use-Case Report (according to Unified Process):
1. Brief Description
2. Flow of Events
3. Special Requirements
4. Pre-conditions
5. Post-conditions
6. Extension Points
7. Relationships
8. Use-Case Diagrams
9. Other Diagrams

Use cases

Model-based Transition from Requirements to High-level Software
Design

© Hermann Kaindl

Institute of Computer Technology

Use-case diagram

UML graphical notation
Ellipse: use case

Stick man: actor

Connecting line: association

Name of actor

Name of use case

Institute of Computer Technology

Outline

Background
Functional requirements, goals and scenarios
/ use cases
Requirements and UML models
Transition to software design
Model-based transformation?

Model-based Transition from Requirements to High-level Software
Design

© Hermann Kaindl

Institute of Computer Technology

Functions: “effects achieved by some entity”
Goals: “partially specified states that the user
considers as desirable”
Scenarios: “sequences of actions aimed at
accomplishing some task goal”
Use cases: “particular cases of how the system is to
be used”, “classes of scenarios”

Glossary

Institute of Computer Technology

Functional requirements

Describe required functionality not yet available
Functional user requirements may be high-level
statements of what the system should be able to
do.
Functional software/system requirements should
describe the functions of the software/system to be
built in detail (but not yet its design or
implementation).

Model-based Transition from Requirements to High-level Software
Design

© Hermann Kaindl

Institute of Computer Technology

Scenarios – Stories and narratives

For representation of
● cultural heritage
● explanations of events
● everyday knowledge
Human understanding in terms of specific situations
Human verbal interactions by exchanging stories

Institute of Computer Technology

Rent Available Video:

1. A member of the video store identifies himself/herself to
VSS (Video Store Software).

2. VSS shall check the identification.

3. If the identification is successful, VSS shall start a
transaction and present a selection of video titles.

4. The member selects a video title that is available and
indicates the intent to rent (a copy of) the video.

Scenarios – Video Store example

Model-based Transition from Requirements to High-level Software
Design

© Hermann Kaindl

Institute of Computer Technology

5. VSS shall book this rental on the account of the member
and ask the clerk to hand out a video copy to the member.

6. The clerk hands out a copy of the video title and
acknowledges this to VSS.

7. VSS shall again present a selection of video titles.

8. The member does not select further titles, but initiates
the termination of the transaction.

9. VSS shall issue a good-bye message and terminate the
transaction.

Scenario – Video Store example (cont.)

Institute of Computer Technology

1. A member of the video store identifies himself/herself to
VSS (Video Store Software).

2. VSS shall check the identification.
By-Function: Member Identification Check

...

5. VSS shall book this rental on the account of the member
and ask the clerk to hand out a video copy to the member.
By-Function: Video Rental Booking

Video Handing-out Request
...

By-Function – Video Store example

Model-based Transition from Requirements to High-level Software
Design

© Hermann Kaindl

Institute of Computer Technology

Rent Available Video By-Function Video Rental Booking

Video Rental Booking:

VSS shall book the rental of a copy of a video title on the
account of the member, and reduce the number of available
copies of the video title by 1.

Functional requ. – Video Store example

Institute of Computer Technology

Member Has Video for Rent By-Scenario Rent Available Video

Member Has Video for Rent:

A member of the video store has a copy of a video title from
the store for rent.

Goal – Video Store example

Model-based Transition from Requirements to High-level Software
Design

© Hermann Kaindl

Institute of Computer Technology

Institute of Computer Technology

Scenarios

Goals

By-Scenario

Functional Requirements

By-Function

What is known already?
Old system or system to be built?

Idea: navigation in the metamodel graph
Excerpt:

Systematic process

Model-based Transition from Requirements to High-level Software
Design

© Hermann Kaindl

Institute of Computer Technology

Member

Rent Video

Maintain Video Data

Use-case diagram – Video Store example

Return Video
Clerk

Help Member
«extends»

«extends»

Institute of Computer Technology

Bank
Customer

Withdraw Cash

Deposit Cash

Transfer between
Accounts

«includes»

Identify Customer

«includes»

«includes»

Use-case diagram – ATM example

Model-based Transition from Requirements to High-level Software
Design

© Hermann Kaindl

Institute of Computer Technology

Outline

Background
Functional requirements, goals and scenarios
/ use cases
Requirements and UML models
Transition to software design
Model-based transformation?

Institute of Computer Technology

DomainDomain

Real world

RequirementsRequirements

Abstraction

Model

Requirements and object-oriented models

Model-based Transition from Requirements to High-level Software
Design

© Hermann Kaindl

Institute of Computer Technology

«stereotype»
Requirement

«stereotype»
Envisioned Scenario

«stereotype»
Functional Requirement

«stereotype»
Quality Requirement

«stereotype»
Constraint on System

«stereotype»
Constraint on Process

Types of requirements

Institute of Computer Technology

Types of requ. – Constraints on system

Performance
Reliability
Security
Safety
Portability
Maintainability
Reusability
Interface
Usability

Model-based Transition from Requirements to High-level Software
Design

© Hermann Kaindl

Institute of Computer Technology

Types of requ. – Constraints on process

Specific development process to follow
Specific programming language for implementation
Specific tools to be used
Specific hardware to be used
Political issues
Time to market
Terms of delivery
Cost

Institute of Computer Technology

Conflicts between Quality Requirements

VSS example
VSS shall allow direct access to member data.
VSS shall protect member data from illegal access.

Usability vs. Security
Trade-off
Common in complex systems

Model-based Transition from Requirements to High-level Software
Design

© Hermann Kaindl

Institute of Computer Technology

Types of requ. – Which “system”?

Requirements for proposed system to be built
Software (and hardware) system
Requirements for composite system
Including human users and business artifacts

Institute of Computer Technology

OOA model – ATM Example

Entry Station
out of order

ATM

owner
1 *

Cash Card
bank code
card code
serial number

user

*

*

Transaction
date-time

Remote transaction

Cashier
name

Cashier Station

Customer
name
address
password

Cash notes
on hand
dispensed

recipient
**

Cashier transaction

provider

*
*

user
* *

handler

*
*

Model-based Transition from Requirements to High-level Software
Design

© Hermann Kaindl

Institute of Computer Technology

OOA model adapted – ATM Example

Entry Station
out of order

ATM

owner
1 *

Cash Card
bank code
card code
serial number

user

*

*

Transaction
date-time

Remote transaction

Cashier
name

Cashier Station

Customer
name
address
password

Cash notes
on hand
dispensed

recipient
**

Cashier transaction

provider

*
*

user
* *

handler

*
* *

handler*

handler

*
*

Institute of Computer Technology

insert card

request PIN

OOA model – UML sequence diagram

enter PIN

request amount

enter amount

request confirmation

enter confirmation

dispense card

take card

dispense cash

Represents a scenario
Interaction of instances
Activation
System border

a1:ATMc1:Customer

Model-based Transition from Requirements to High-level Software
Design

© Hermann Kaindl

Institute of Computer Technology

OOA model – RUP

Analysis Model:
“An object model describing the realization of use
cases, and which serves as an abstraction of the
Artifact: Design Model. The Analysis Model contains
the results of use case analysis, instances of the
Artifact: Analysis Class.”
“Analysis classes represent an early conceptual
model for ‘things in the system which have
responsibilities and behavior’.”

Institute of Computer Technology

OOA model – UP Larman

“The Analysis Model is perhaps not ideally named,
as it is actually a kind of design model. In
conventional usage, ..., an analysis model
suggested essentially a domain object model—an
investigation and description of domain concepts.
But the UP “Analysis Model” is an early version of
the UP Design Model—it describes collaborating
software objects with responsibilities.”

Model-based Transition from Requirements to High-level Software
Design

© Hermann Kaindl

Institute of Computer Technology

OOA model – SEM

Purpose
“An OOA model facilitates a better understanding of
the application domain as it shall be after the
implementation of the product. In this sense, it shall
contribute to the specification of the problem and
thus of the requirements.”
Content
“In an OOA model the to-be situation of the real
world is modeled, where the product to be built will
be integrated.”

Institute of Computer Technology

0..1

0..*

0..1

0..*

rent to

1..*1..*

in stock as

Video Title
...

Video
...

Member
...

Customer
...

Clerk
...

1..*
maintained by

VSS

works with

maintains

1..*

OOA model – Video Store example

Model-based Transition from Requirements to High-level Software
Design

© Hermann Kaindl

Institute of Computer Technology

hand out! (Video)

hand out (Video)

acknowledge ()

OOA model – UML sequence diagram

Unnamed instances
Concurrent objects

select title from (List)

terminate ()

good-bye ()

check Member (ID)

select title from (List)

rent (Video Title)

:VSS:Clerk:Member

Institute of Computer Technology

Conceptual
model

Model-based Transition from Requirements to High-level Software
Design

© Hermann Kaindl

Institute of Computer Technology

Further development

European Union ReDSeeDS project
Requirements Driven Software Development System
Contract number IST-2006-033596
www.redseeds.eu

Scenario-driven development method
Reuse and tool support
Case-based approach

Institute of Computer Technology

Requirements vs. requirements representation

Reuse of requirements representation only
Distinction between

descriptive and
model-based

Descriptive:
need described
Model-based:
abstraction of
what the system
should look like

Model-based Transition from Requirements to High-level Software
Design

© Hermann Kaindl

Institute of Computer Technology

Outline

Background
Functional requirements, goals and scenarios
/ use cases
Requirements and UML models
Transition to software design
Model-based transformation?

Institute of Computer Technology

OOD Model

Customer-D

Software

Customer-P

OOA Model

Customer-A

Customer-A

Model-based Transition from Requirements to High-level Software
Design

© Hermann Kaindl

Institute of Computer Technology

0..1

0..*

0..1

0..*

rent to

1..*1..*

in stock as

Video Title
...

Video
...

Member
...

Customer
...

Clerk
...

1..*
maintained by

VSS

works with

maintains

1..*

OOA model (again)

Institute of Computer Technology

1..*
maintained by

works with

maintains 1..*

0..1

0..*

rent to

1..*

in stock as

Video Title
...

Video
...

Member
...

Customer
...

Clerk
...VSS

0..10..*
rent to

1..*

in stock as

Video_Title_D
...

Video_D
...

Member_D
...

Customer_D
...

Clerk_D
...

Each OOD class needed?

Model-based Transition from Requirements to High-level Software
Design

© Hermann Kaindl

Institute of Computer Technology

works with Clerk
...

1..*
maintained by

maintains 1..*

0..1

0..*

rent to

1..*

in stock as

Video Title
...

Video
...

Member
...

Customer
...

VSS

0..10..*
rent to

1..*

in stock as

Video_D
...

Member_D
...

Clerk_D
...

Video_Title_D
...

Customer_D
...

Institute of Computer Technology

works with Clerk
...

1..*
maintained by

maintains 1..*

0..1

0..*

rent to

1..*

in stock as

Video Title
...

Video
...

Member
...

Customer
...

VSS

0..10..*
rent to

1..*

in stock as

Video_D
...

1..*

available Video

1..*

Member_D
...

Video_Title_D
...

Customer_D
...

Additional association needed?

Model-based Transition from Requirements to High-level Software
Design

© Hermann Kaindl

Institute of Computer Technology

works with Clerk
...

1..*
maintained by

maintains 1..*

0..1

0..*

rent to

1..*

in stock as

Video Title
...

Video
...

Member
...

Customer
...

VSS

Video_D
...

all Titles

0..*

TitleMngr
...

getTitleList()
getAvailableVideo()

0..10..*
rent to

1..*

in stock as

Member_D
...

Video_Title_D
...

Customer_D
...

1..*

available Video

1..*

Additional OOD class needed?

Institute of Computer Technology

Video_D
...

all Titles

0..*

TitleMngr
...

getTitleList()
getAvailableVideo()

1..*

available Video

1..*

Video_Title_D
...

0..10..*
rent to

Member_D
...

Customer_D
...

1..*

in stock as

Preliminary OOD model

Model-based Transition from Requirements to High-level Software
Design

© Hermann Kaindl

Institute of Computer Technology

VSS_BO
TitleMngr

Customer_D

Member_D
Video_D

Video_Title_D

VSS_UI

MainWindow

VSS_DATA

DataBase

UI_Titles

VideoTitlePersMgr

MemberPersMgrVideoPersMgr

OOD model and architecture

Institute of Computer Technology

OOA Model
Architecture

OOD Model

Domain objects

Layers,
Client-Server,
Model-View-
Controller,

...

VSS_BO
0..*0..* TitleMgr

Customer
MitglVideo

Video

VSS_UI

MainWindow

VSS_DATA

DataB

UI_Titles

VideoTitleP

MemberPCustomerP

VSS_UI

VSS_DATA

VSS_BO

Overview

Model-based Transition from Requirements to High-level Software
Design

© Hermann Kaindl

Institute of Computer Technology

OODOOA

:UI_Titles :Video_Title_D :Video_D :TitleMngr :Member_D :Rental

rent (Video Title)
create ()

getAvailableVideo () : Video

hand out! (Video)

hand out (Video)

rent (Video Title)

rent ()

:VSS:Clerk:Member

hand-outRequest (Video)

Sequence diagrams – Video Store Example

rent ()

Institute of Computer Technology

Refined (part of) OOD modelVSS_BO

all Titles

0..*

TitleMngr
...

getTitleList()
getAvailableVideo()

1..*

available Video

1..*

0..1
0..*

rent to

1..*

in stock as

Member_D
ID

rent (Video Title)
...

Video_D
number

rent ()
...

Video_Title_D
description

rent ()
...

Rental
date-time
create ()
...

video to be rent

Customer_D
...

...

Model-based Transition from Requirements to High-level Software
Design

© Hermann Kaindl

Institute of Computer Technology

OOD recommendations

Imagine zooming in on the black box representing the
proposed system in the OOA model.
Develop an architectural vision of the proposed system.
Will the proposed program need information about real-
world objects (from the OOA model)?
Will all of the OOA object’s attributes be needed?
Will additional attributes be needed?
Will additional associations be needed?
Define the architecture and “additional” object classes.
Assign responsibilities to OOD objects.

Institute of Computer Technology

Software architecture

IEEE Standard Glossary of SW Engineering Terminology
“The organizational structure of a system or
component.”
UML Specification (Glossary)
“The organizational structure and associated behavior of
a system. An architecture can be recursively
decomposed into parts that interact through interfaces,
relationships that connect parts, and constraints for
assembling parts. Parts that interact through interfaces
include classes, components and subsystems.”

Model-based Transition from Requirements to High-level Software
Design

© Hermann Kaindl

Institute of Computer Technology

Software architecture – Why?

Granularity of objects too small
High-level structure
Big picture
Strategic design decisions
Divide-and-conquer:
decomposition and modularization
System-internal interfaces
How to deal with constraints on system (requ.)

Institute of Computer Technology

Selection depending on constraint requirements

Performance
Large rather than fine-grain components for minimizing communication

Security
Layered architecture with critical assets in the inner layers

Safety
Localization of safety-critical features in a small number of sub-systems

Availability
Redundant components and mechanisms for fault tolerance

Maintainability
Fine-grain, replaceable components with low coupling

Model-based Transition from Requirements to High-level Software
Design

© Hermann Kaindl

Institute of Computer Technology

Outline

Background
Functional requirements, goals and scenarios
/ use cases
Requirements and UML models
Transition to software design
Model-based transformation?

Institute of Computer Technology

Differences between
MD Transformation and Mapping

MD transformation:
mathematical function that constructively and uniquely maps
some input in one or more models to some output in one or
more models
MD mapping:
mathematical relation
Transition from requirements to architecture?
“Magic” problem solver?
MD transformation possibly in hindsight, but not computable
for most practical problems

Model-based Transition from Requirements to High-level Software
Design

© Hermann Kaindl

Institute of Computer Technology

From Domain Objects to Design Objects?

MD mapping between domain classes and design classes by
using the graphical notation of QVT

Institute of Computer Technology

From Domain Objects to Design Objects?
(cont.)

Problem of universal quantification
How about an MD transformation?
Substitution of ‘C’ at the right through ‘E’ (for enforcement):
Generates an object class in the OOD model for each object
class in the OOA model.
Manual modifications needed

Model-based Transition from Requirements to High-level Software
Design

© Hermann Kaindl

Institute of Computer Technology

From Use Cases and Scenarios to Components?

MD transformation for generating a controller class for each
use case using the graphical notation of MOLA

Institute of Computer Technology

From Use Cases and Scenarios to Components?
(cont.)

MD transformation for
generating a controller class
for each use case package,
including an interface for
each use case and an
association to the
corresponding component
Tacit assumption:
decomposition and
grouping in the design
(solution space) shall be the
same as in the require-
ments (problem space)

Model-based Transition from Requirements to High-level Software
Design

© Hermann Kaindl

Institute of Computer Technology

From Use Cases and Scenarios to Components?
(cont.)

Probably results in less than optimal design
Use cases in the requirements model should be grouped
according to usage and goals.
A good software design should group controllers according
to low coupling and high cohesion.
Refactoring needed after transformation
Having an architecture with components and interfaces
exactly corresponding to the use cases, their scenarios and
contained functions may restrict the use of the system.
Functions exposed directly may allow for unanticipated
scenarios.

Institute of Computer Technology

Summary and Conclusion

OO business and domain modeling is useful.
Objects, goals, scenarios / use cases and functional
requirements can be combined.
OO modeling can be used seamlessly from
requirements to software design.
Some mapping and transformation rules may be
useful for certain systematic correspondences.
Major manual adaptations and enhancements
through the software architect will be needed.

Model-based Transition from Requirements to High-level Software
Design

© Hermann Kaindl

Institute of Computer Technology

Selected work of this tutorial presenter

Kaindl, H., A Practical Approach to Combining Requirements Definition
and Object-Oriented Analysis, Annals of Software Engineering, 3, 1997,
pp. 319–343.
Kaindl, H., Difficulties in the Transition from OO Analysis to Design, IEEE
Software, Sept./Oct. 1999, pp. 94–102.
Kaindl, H., A Design Process Based on a Model Combining Scenarios with
Goals and Functions, IEEE Transactions on Systems, Man, and
Cybernetics (SMC) Part A 30(5), 2000, pp. 537–551.
Kaindl, H., Is Object-Oriented Requirements Engineering of Interest?,
Requirements Engineering, 10, 2005, pp. 81–84.
Kaindl, H., A Scenario-Based Approach for Requirements Engineering:
Experience in a Telecommunication Software Development Project,
Systems Engineering, 8, 2005, pp. 197–210.

